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1. Detailed network architecture  

Fig. S1 illustrates the network architecture of the proposed neural network, with the data flow details 

included. Input conditions (1×1×N), including amplitude and phase responses, either frequency-

dependent or polarization-dependent, were firstly concatenated with the randomly generated latent 

vector (1×1×100) to form a conditioned noise (1×1×(N+100)). This conditioned noise was then passed 

to the generator in order to produce fake meta-atom samples (64×64×1) that resemble real ones 

(64×64×1) well enough to confuse the Discriminator. Subsequently, the input conditions (1×1×N) 

were spatially tiled into 3D matrixes (64×64×N) and concatenated with real meta-atom samples 

(64×64×1) or fake meta-atom samples (64×64×1). The Wasserstein distance between the real and fake 

conditioned meta-atom samples (64×64×(N+1)) were later measured by the discriminator. During the 

training process, the discriminator can learn by maximizing the Wasserstein distance between the fake 

and real samples, while the generator aims to fool the discriminator by generating fake designs with 

minimized Wasserstein distance comparing to the real ones. The trainings of the generator and the 

discriminator were executed in turns, meaning that the parameters in the generator were fixed during 

the training of the discriminator, and vice versa. To stabilize the training, parameters in the 

discriminator were updated 3 times in each iteration, while the generator was trained once. Both 

modules approach the real data distribution through parameter tuning during this adversarial process. 

The training ended when losses for both the Generator and the Discriminator were stabilized. More 

detailed architectures of the generator and discriminator are shown in Fig. S1b and S1c, respectively.  
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Figure S1.  Detailed network architectures of the GAN. (a) Illustration of the training process of the GAN. (b) 
Detailed network structure of the discriminator. The discriminator consists of seven consecutive convolution 

layers. The output of each layer is batch-normalized and passed through a ReLU activation function before being 

passed on to the next layer. The conditions are tiled into a 3D vector (64×64×N) and then concatenated with the 

2D image (64×64×1). The initially planar dimensions of the combined input (64×64×(N+1)) are decreased while 

the depths are increased via (2, 2) stride convolutional layers. The output tensor of layer #7 is flattened into a 1D 

array and the reduced sum is calculated to represent its Wasserstein distance. (c) Detailed network structure of 

the generator. Conversely, the generator consists of eight consecutive transposed convolution layers for which 

the depth of an output tensor is decreased while gradually being flattened into a 2D meta-atom image. The output 

of each layer is batch-normalized and passed through a Leaky ReLU activation function. After the last 

transposed convolutional layer, a tanh activation function generates a 2D image representing the meta-atom 

design. Details of each output tensor, shapes of the (transposed) convolutional kernels and strides used during 

convolutions are given in the figure. 

For more design DOF, despite that the original input images (with 28 × 28 pixels resolution) that are 

used to sketch the 2D shape of the meta-atoms from the training dataset, the input images were all 

rescaled into 64 × 64 pixel images before they were processed using convolutional layers. The 
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generator and the discriminator were trained alternately: after the discriminator was trained with 3 

different batches of training data, values of the hidden neurons in each convolutional layer are updated 

and fixed. The generator was then trained with a new batch of training data with the help of the most 

up-to-date discriminator, and so on, until training completes. Details, including dimensions of each 

output tensor, shapes of the convolutional kernels and strides used during convolutions are given in 

Fig. S1b and S1c. 

 

Figure S2.  Detailed network architectures of the predicting neural network (PNN). Details including 

dimensions of each output tensors, shapes of the (transposed) convolutional kernels and strides used during 

convolutions are given in the figure. 

Following the approaches introduced in 
[57]

, we constructed two PNNs (Fig. S2) to predict the real and 

imaginary parts of the transmission spectrum, respectively. Transmissive amplitude and phase are then 

derived using the predicted real and imaginary parts. Detailed network architecture of the PNN 

cascaded to the GAN is shown in Fig. S2. The PNN was constructed based on a convolutional neural 

network (CNN) architecture. It functions as a critic and examines the performance of the designs 

generated by the proposed GAN. Specifically, the PNN is able to precisely predict the transmission 

spectrum of free-form meta-atom designs within the frequency range of 30 to 60 THz. In contrast to 
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full-wave simulation tools, the PNN characterizes the meta-atoms on a one-time calculation basis and, 

thus, significantly speeds up the whole design process. 

2. Training data collection 

Without loss of generality, the all-dielectric meta-atom consists of a 1 μm thick dielectric component 

(preferably with a high refractive index, n1. In this case n1 = 5) sitting on a dielectric substrate 

(preferably with a low refractive index, n2. In this case n2 = 1.4) with a unit cell size of 2.8 × 2.8 μm
2
 

(Fig. S3a). The 2D pattern of each meta-atom was generated with the “needle drop” approach using 

the numerical computing tool MATLAB. Several (3 to 7) rectangular bars, with a minimum generative 

resolution of 0.1 μm, were randomly generated and placed together within a square lattice to form 

random patterns (Fig. S3b). To minimize inter-cell coupling, a minimum spacing of 0.4 μm was 

applied between adjacent meta-atoms. To speed up the data-collection process, the all-dielectric 

components are only generated in the top left quadrant of each unit cell and then symmetrically 

replicated along x and y axes to form the whole pattern. A set of meta-atoms generated in this manner 

is guaranteed to possess polarization-diverse performance. 

The full-wave electromagnetic simulations were performed using a commercial FEM simulation tool 

CST. For each meta-atom, perfect electric conducting surface (Et = 0) and perfect magnetic conducting 

surface (Ht = 0) boundary conditions were employed to calculate the transmission and phase shift of a 

square lattice structure. Open boundaries are applied along both the negative and positive z directions, 

while an x-polarized plane wave was illuminated from the substrate side for each meta-atom. To 

further accelerate the full-wave simulations, Et = 0 and Ht = 0 symmetry planes were applied in the 

center y-z plane and x-z plane for each meta-atom, respectively. The frequency range of interest is set 

to be between 30 to 60 THz. A total number of 69,000 meta-atoms with different shapes were 

generated and simulated to find their wide-spectrum phase and amplitude responses. These 

simulations were performed on eight servers running in parallel. The data collection process was 

completed in 3 days. After removing similar patterns (to speed up the training), 29,000 meta-atom 

structures were selected and documented for further training. 
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Figure S3. Training data collection process. (a) 3D view of a generated meta-atom of arbitrary shape. Lattice 

constant for each meta-atom cell is 2.8 μm, meta-atom height is fixed to be 1 μm. White and black colors 

represent high- and low-index (substrate) dielectric components. (b) Demonstration of the pattern generation 

process. 2D patterns in x-y plane are meshed, each mesh pixel has a dimension of 0.1 by 0.1 μm
2
. Rectangles 

outlined in different colors represent distinct high-index “needles” that were randomly generated and dropped on 

the top-left quadrant of the substrate canvas. Patterns were completed by mirroring the pattern along the x and y 

axes. 

3. Customized gradient-penalty method  

The Wasserstein distance is only accurate when the discriminator is a 1-Lipschitz function.
[45]

 To 

enforce this constraint, the original WGAN applied a simple, but rough, value clipping to restrict the 

maximum weight value in each layer of the discriminator.  Instead, WGAN-GP uses a gradient penalty 

term to ensure that the norm of its gradients is equal to 1 almost everywhere 
[46]

 so that the 

discriminator is 1-Lipschitz. Conditional-Wasserstein distance with a gradient penalty term can be 

represented as: 

  (        )       
‖ ‖   

{𝔼       
[ ( | )]  𝔼     

[ (  | )]

  𝔼          
[    (  ‖  ( ( ))‖   )]} 

(  ) 

Traditional WGAN-GP randomly interpolates between network generated patterns            and real 

sample patterns       to generate gradient penalty samples         , as shown in Fig. S4a. The 
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interpolation method has an important advantage: as the training progresses and            approaches 

     , the gradient norm of this more widespread distribution         , instead of the real sample 

distribution      , satisfies the Lipschitz constraint, and we can thus conclude that the discriminator is 

1-Lipschitz almost everywhere within      .  

 

Figure S4. A novel interpolation method for customized gradient penalty. (a) Schematic diagram of the 

random interpolation process in WGAN-GP. The network randomly interpolates between            and       to 

get         . (b) Numerical interpolation methods employed by traditional WGAN-GPs. The meta-atom patterns 

are binarized, such that white represents “1” and black represents “0”. (c) The proposed novel geometry 

interpolation method. Random proportions (marked in red) were taken from both fake samples and real samples 

and later combined into a new pattern. 

In our case, with meta-atom patterns as target design goals, the generated outputs can be converted 

into binary images consisting of 1’s that represent the dielectric material and 0’s that represent voids. 

The conventional numerical interpolation process is not applicable for the meta-atom discriminator, 

because generated values between “0” and “1” don’t correspond to any physical structures (Fig. S4b). 

As a result, the discriminator that is trained to satisfy the Lipschitz constraint for this          is 

intuitively challenged to yield stable Wasserstein distance results for real samples from       during 

the training. We therefore employed a novel geometry interpolation method that combines random 

geometry portions from both            and       to form the sample in           (Fig. S4c). The 

interpolated results obtained in this manner fully characterize the samples between            and 

     . This unique interpolation method also allows the generator to extrapolate and explore the 
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ground truth distribution when the training data is insufficient to cover the whole design space. 

Training experiments which validate the training stability, design accuracy and extrapolation 

capability of the proposed gradient-penalty method are presented in Section 4. 

 4. Hyperparameters and training curves  

Table S1. Hyperparameters used in the training of GANs and PNNs. 

Hyperparameters 
Meta-atom 

design network 

Dual-polarization 

meta-atom design 

network 

PNN 

for real part 

PNN 

for imaginary part 

Training set size 29,000 29,000 69,000 69,000 

Optimizer 

(learning rate) 
Adam (1e-4) Adam (1e-4) Adam (1e-4) Adam (1e-4) 

Batch size 64 64 256 256 

Batch Norm. Yes Yes No No 

Nonlinear 

activations 

ReLU for the discriminator, 

Leaky ReLU (alpha = 0.2) for the 

generator, 

tanh for the generator’s last layer 

ReLU 

Penalty coefficient 10 10 NA NA 

Iterations (time) 3,000 (72 h) 3,000 (72 h) 10,000 (6 h) 10,000 (6 h) 

Hyperparameters used during training are shown in Table S1. Training curves for the meta-atom 

design network, dual-polarization meta-atom design network, and PNN are shown in Fig. S5. Despite 

the slightly different structures and training data fed to these networks, their generator losses all 

decrease gradually while discriminator losses remain constant. As shown in Fig. S5 (a-b), after 

approximately 3,000 epochs of training, each network converged to a point that both generator and 

discriminator loss stabilized, which means that the generator is able to generate samples that are close 

enough to the real samples that the discriminator is unable to differentiate between real and fake.  
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Figure S5. Training losses of the two GANs and the PNN proposed in the paper. (a) The meta-atom 

generative network operating at 50 THz. (b) The dual-polarization meta-atom generative network working at 55 

THz. (c) PNN real part prediction. (d) PNN imaginary part prediction.  

Training curves for the two constructed PNNs were included in Fig. S5(c-d). Both networks are 

trained with the same 69,000 groups of training data collected for the training of the GANs. Both 

networks converged well after 10,000 iterations. 

To better visualize how the network learned the meta-atom design principles and actually “evolved” 

during the training process, we recorded the network models during the training process and employed 

several half-trained models to design the same bifocal metalens, presented in Fig. 3, and tested their 

performance by numerical simulations. Four different sets of bifocal metalens designs based on GAN 

models derived after 1, 2, 100 and 3,000 training iterations are presented. The designed metalenses, 

along with their full-wave simulated E-fields, are plotted in Fig. S6. Interestingly, at the beginning of 

the training process, the generated meta-atoms designs have similar shapes with large volumes and 

unclear boundaries (Fig. S6a). As the training proceeds, the GAN models start to generate meta-atom 
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patterns with more diverse shapes and refined details (Fig. S6b-d). The corresponding E-field 

distributions also gradually converged to two sharp focal spots (Fig. S6d), as desired, which firmly 

confirm the increasing learning capability of the proposed GAN model during the training process. 

 

Figure S6. Visualization of the GAN training process. Bifocal metalenses with target amplitude and phase 

maps shown in Fig. 3a and 3b, designed using GAN models trained for (a) 1 iteration, (b) 2 iterations, (c) 100 

iterations and (d) 3,000 iterations. Several meta-atoms from each metalens design are magnified for a clear view. 

Numerically simulated E-field of each metalens were performed using CST and plotted on the right side of each 

subplot.  

  



     

10 

 

5. Polarization-independent metalens design 

 

Figure S7. A polarization-independent focusing lens designed with the dual-polarization meta-atom 

generative network. (a) Metasurface pattern designed with the dual-polarization meta-atom generative network.  

Part of the metasurface device circled in red lines was enlarged in (b) for a clear view. (c) Element-wise phase 

and amplitude responses of each designed meta-atom under y and x polarized incidences. (d) Full wave 

simulated amplitude of E-field in y-z plane under two orthogonal polarization incidences. Focal length remained 

80 μm while polarization direction was switched. (e) Full-wave simulated E-field along optical axis under two 

orthogonal polarization directions.  

To further explore the versatility of the multifunctional meta-atom design network, we utilized our 

dual-polarization meta-atom generative network to design a polarization-insensitive transmissive focal 

lens with an equal focal length of 80 μm for both polarizations. One way to achieve this goal is 

enforcing that the phase shifts for x and y polarization are identical, which primarily results in 
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structures that feature 4-fold rotational symmetry, in accordance with their polarization-insensitive 

nature. The 4-fold rotational symmetry requirement can be relaxed by considering that the relative 

phase difference between two polarization states need not be zero, but simply maintained constant. 

Following this approach, with the help of dual-polarization meta-atom generative network, a 90 degree 

constant phase bias (difference) was added to the lens’ phase mask under x-polarized plane wave 

incidence (versus that under y-polarized incidence). For each single cell in the metasurface lens, its 

target phase profiles under both polarization were designated as input of the network and one qualified 

design was generated to assemble the metalens (Fig. S7a). The full wave simulated electric fields in y-

z plane for the whole lens in Fig. S7a are plotted in Fig. S7d. The E-fields along the optical axis in 

both cases share the same focal length of 80 μm with near-equal magnitude (Fig. S7e), validating the 

efficacy of proposed design approach.  

6. Meta-filter design network 

Wideband metasurface filters normally require distinct transmission performances at different 

frequency points, which are non-intuitive and thus their design largely relies on trial-and-error 

approaches. Meanwhile, design complexity of the proposed deep learning-enabled metasurface/ 

metamaterial inverse design network is not affected by the size of or correlation between the inputs, 

which makes it a perfect solution to these devices. The network structure proposed in this paper was 

also slightly modified to build a meta-filter generative network. The training curve of this GAN is 

shown in Fig. S8. 
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Figure S8. Training losses of the meta-filter generative networks. 

The condition vector x, is denoted as:   [   ( )    ( )      ( )], where N represents the 

number of the frequency points used to sample the whole spectrum. We consider here a relatively 

wideband spectrum covering from 30 THz to 60 THz, which corresponds to a 5-10 μm spectrum in 

wavelength. A total number of 31 frequency points, with a spacing of 1THz, were chosen to sample 

the spectrum. Loss function for this network is the Euclidean distance between target spectrum 

responses ( ) and responses of the designed meta-atoms ( ( )), defined as: 
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After the training fully converged, several sample patterns were created with different target 

transmission conditions (red curves) using the trained generative model (Fig. S9), along with the 

corresponding electromagnetic responses (blue curves) obtained through full wave simulations. 
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Figure S9. A wideband transmissive metasurface filters designed with the meta-filter generative network. 

(a) Design examples with targeted spectral responses from training dataset. (b) Design examples with user-

defined targets. Red curves represent targeted spectrum while blue curves represent FEM simulated spectral 

responses of the generated designs. An x-polarized plane wave was illuminated from the substrate side for each 

meta-atom. 

From Fig. S9, we can conclude that the transmission spectra of network-generated meta-atoms agree 

well with the targeted spectral responses in the cases when target responses are from the training 

datasets (Fig. S9a) and user-defined (Fig. S9b). This indicates the extraordinary “extrapolating” 

capability of the proposed network, which isn’t necessarily limited by the training data distribution 

     . With the results as shown above, we feel the proposed network is able to handle inverse design 

tasks with larger size conditional vectors. 

7. Meta-atom robustness analysis 

Fabricated nano-structures often exhibit a non-vertical sidewall angle, which leads to resonance 

peak/dip shifts and potential efficiency drops. Normally, distinct meta-atoms designs perform 

differently under perturbations, which makes some of the designs more robust under perturbed side 

wall angles. Due to the generative nature of the proposed network, the well-trained model can create 

various designs that allows us to select the ones which are insensitive to this fabrication defects. 
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To make this case more convincing, we consider the metasurface fabrication platform with the 

material combination of PbTe and CaF2 (experimentally demonstrated in ref. [6], where a non-vertical 

sidewall angle was reported) to perform our verification. With a high refractive index exceeding 5, 

PbTe is considered ideally suited for creating dielectric meta-atoms supporting multiple Mie 

resonances. The material pair of PbTe and CaF2 also exhibits low optical attenuation in the mid-IR 

spectrum, allowing high transmission efficiency meta-atom designs. In reference to the experimental 

setups in [6], all meta-atoms under consideration are composed of a PbTe block sitting on a CaF2 

substrate (Fig. S10a). The period, P, is set to be 2.5 μm along both axes. Total thickness of the PbTe 

block is fixed at 650 nm. The material refractive index n and extinction coefficient k of the PbTe 

material reported are employed, in which the PbTe material was modeled using a phenomenological 

two-layer structure in order to characterize the slight spatial composition variation caused by 

noncongruent vaporization. The thicknesses of top layer and bottom layer are set to be 0.35 μm and 

0.3 μm, respectively, while their corresponding n and k values are plotted in Fig.S10b. Two selected 

meta-atoms, shown as the insets in Fig. S10c and S10d, have almost identical amplitude and phase 

responses at the working frequency (57.7THz). However, after applying a non-vertical side wall angle 

(Fig. S10e) to both cases, we find out that these two meta-atoms perform differently under 

perturbations. As the side wall angle is decreased from 90-degree (vertical) to 80-degree, the 

amplitude of the original design (as shown in Fig. S10c) is dropped from 0.92 to 0.79, while that of the 

new meta-atom designed by the generative network stays at 0.87 or above (Fig. S10d), indicating that 

it’s a more robust design under perturbed side wall angles. 
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Figure S10. Robustness analysis on meta-atoms’ side wall angles. (a) Schematic front-view of a PbTe-CaF2 

meta-atom structure. (b) Corresponding refractive index n and extinction coefficient k of the PbTe material fitted 

to a two-layer model. (c, d) Wide band amplitude responses of (c) original designs and (d) new designs with 90, 

88, 86, 84, 82 and 80 degrees side wall angles. Designs with vertical side walls and incline side walls are 

included as insets. (e) Side wall angle is defined as the angle between high-index meta-atom sidewall and the 

substrate interface. (f) Simulated amplitude responses of both meta-atoms fabricated with different sidewall 

angles. 

Figure (b) Reproduced with permission. [6] 2018, Nature communications. 
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The wideband spectrum responses as shown in Fig. S10c and Fig. S10d further reveal the difference 

between these two meta-atoms. As shown in Fig. S10c, at the target wavelength (or frequency), the 

original bar-shaped meta-atom is operating at the edge of a resonance dipole (the region where the 

amplitude is sensitive subject to any perturbation). The varying sidewall angle shifts this resonance 

towards the lower frequencies, which causes significant amplitude drop. In contrast, as shown in Fig. 

S10d, the new design is not operating at the edge of the resonance dipole, making it less sensitive to 

the spectral shift induced by non-vertical sidewall angles. To conclude, benefiting from the superior 

design efficiency and accuracy, the proposed network can readily generate numerous meta-atom 

candidates with qualified performance at low time cost, where robust and preferable designs can be 

identified and selected afterwards, which is highly desirable for metasurface fabrication and 

application. 

 

 


